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Introduction
Uterine fibroids (UFs), or leiomyomas, are among the most common 
benign tumors of the female reproductive system, with prevalence 

rates reaching up to 68% among women of reproductive age.1,2 This 
condition is often associated with symptoms such as heavy men-
strual bleeding and pelvic pain, significantly affecting reproductive 
health and overall quality of life.3 Although UFs affect a substantial 
proportion of women, the etiological pathways and mechanisms of 
disease progression remain incompletely understood, warranting 
further investigation into their pathogenic drivers.4

In recent years, genome-wide association studies (GWAS) 
have become an important tool for identifying single nucleotide 
polymorphisms (SNPs) associated with human diseases in general 
and with UF in particular.5–10 These findings have significantly 
advanced our understanding of the molecular mechanisms under-
lying UF pathogenesis, paving the way for the development of 
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Abstract
Background and objectives: Uterine fibroids (UFs) are common hormone-dependent tumors with a complex etiology involv-
ing both genetic and environmental factors. This study aimed to investigate, for the first time, the associations between loci 
from genome-wide association studies (GWAS) and environmental risk factors in UF development, with a particular focus on 
gene–environment interactions.

Methods: DNA samples from 737 women with UF and 451 healthy controls were genotyped for ten UF-associated GWAS sin-
gle nucleotide polymorphisms (SNPs) using probe-based polymerase chain reaction in this case-control study.

Results: SNP rs66998222 (LOC102723323, G/A) was associated with decreased UF risk in the total sample (odds ratio (OR) = 
0.81, p = 0.038) and in patients with a history of induced abortion (OR = 0.70, p = 0.009). SNP rs11031731 (THEM7P, WT1, G/A) 
increased UF risk overall (OR = 1.39, p = 0.01), and in women with abortion history (OR = 1.60, p = 0.008) or without pelvic 
inflammatory disease (OR = 1.43, p = 0.02). SNPs rs641760 (PITPNM2, C/T) and rs2553772 (LOC105376626, G/T) showed 
protective effects depending on abortion history. SNP rs1986649 (FOXO1, C/T) was associated with later UF onset (p = 0.049) 
and slower growth (p = 0.017). GWAS loci influence UF-related genes involved in proliferation, inflammation, and hormone 
metabolism, underscoring their pathogenic role.

Conclusions: Induced abortions and inflammation modify the effects of GWAS-identified UF risk loci, with allele-specific im-
pacts on hormonal, inflammatory, and repair pathways. Replication in diverse cohorts is needed to validate these population-
specific effects.
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targeted therapeutic approaches.11 However, the interplay between 
GWAS-identified genetic loci and environmental risk factors re-
mains insufficiently explored.

Environmental factors, including pelvic inflammatory disease 
(PID) and induced abortions, play a notable role in UF develop-
ment and progression.12–15 Growing interest in the interactions 
between genetic and environmental factors has highlighted the im-
portance of examining their influences in a holistic context.16,17 On 
one hand, SNPs identified through GWAS may predispose individ-
uals to UF by modulating inflammatory, hormonal, and tissue-re-
lated processes.18 On the other hand, environmental factors such as 
inflammation or myometrial trauma could amplify the activity of 
specific genetic loci, thereby modifying disease risk.19 Previously, 
we examined GWAS loci associated with UF risk, selecting loci 
from the GWAS Catalog. That work was the first to demonstrate 
that these genetic associations could be modified by environmental 
factors such as smoking, intake of fresh vegetables and fruits, and 
reproductive risk factors.19

This study aimed to investigate the associations between newly 
selected GWAS loci and reproductive risk factors in the develop-
ment of uterine UF, with a particular focus on how induced abor-
tions and PID modulate the associations between these loci and 
UF risk, explored here for the first time. Our study examines how 
environmental factors interact with genetic risk, either strength-
ening or weakening the effects of GWAS-identified loci on dis-
ease susceptibility. In the future, these data will help identify key 
mechanisms of pathogenesis and potential targets for preventive 
and therapeutic interventions.

Materials and methods

Study participants
We analyzed the same Central Russian cohort (n = 1,188) as in 
our previous work,19 consisting of 737 clinically confirmed UF 
patients and 451 healthy controls. The studies were conducted 
in accordance with the guidelines of the Declaration of Helsinki 
(as revised in 2024), local legislation, and institutional require-
ments. The Ethics Committee of Kursk State Medical University 
approved all procedures (Protocol №5, May 11, 2021), with writ-
ten consent obtained from all participants. Inclusion required self-
reported Russian ethnicity and Central Russian birth origin. Table 
1 summarizes the baseline characteristics of the participants.

Case participants with ultrasound-verified UF were enrolled 
from 2021 to 2023 at two tertiary care facilities: the Perinatal 
Centre and Kursk City Maternity Hospital. The control cohort, 
comprising individuals with no signs of UFs on clinical or ultra-
sound evaluation, was assembled through systematic screening 
during preventive health visits at regional medical centers and oc-
cupational health settings.20,21 Figure 1 presents a comprehensive 
flowchart detailing the participant selection process and applied 
research methodology.

Selection of environment-associated risk factors for UFs
The following environmental risk factors for UF development 
were analyzed:
1.	 Medical (induced) abortions: These procedures may contribute 

to UF development through mechanisms such as the absence of 
hormonal regulation typically seen in late pregnancy following 
early estrogen surges, tissue repair processes resembling keloid 
formation, and cytokine-mediated inflammation. Collectively, 
these processes activate genetic and signaling pathways that 

drive abnormal tissue growth and fibroid formation.13,14

2.	 PID: Disorders associated with trauma, infection, or inflam-
matory processes disrupt immune homeostasis by upregulating 
T-helper cytokines while suppressing regulatory T cell activity. 
This dysregulation promotes excessive fibrotic tissue formation 
and proliferation.12

Genes and polymorphisms selection
Genes and polymorphisms were selected using the online Re-
productive System Knowledge Portal (RSKP), which aggregates 
data from meta-analyses of GWAS of reproductive diseases 
worldwide (https://reproductive.hugeamp.org/) with the search 
query “uterine fibroids”. SNPs with a minor allele frequency < 
0.05 were excluded, as were those presenting technical challeng-
es for allele-specific fluorescent probe genotyping due to low GC 
content, absence of GC clamps, or homopolymeric nucleotide 
repeats. A total of ten SNPs were included in the genotyping: 
rs2235529 (WNT4), rs59760198 (DNM3), rs10929757 (GREB1), 
rs1812266 (LOC105375949), rs9419958 (STN1), rs11031731 
(THEM7P, WT1), rs2553772 (LOC105376626), rs641760 (PITP-
NM2), rs1986649 (FOXO1), and rs66998222 (LOC102723323).

Genetic analysis
Genotyping was conducted at the Laboratory of Genomic Re-
search, Research Institute for Genetic and Molecular Epidemiol-
ogy, Kursk State Medical University (Kursk, Russia). Participants 
provided up to 5 mL of venous blood, collected in ethylenediami-
netetraacetic acid (EDTA)-coated tubes and stored at –20°C until 
analysis. Genomic DNA was extracted using standard protocols, 
including phenol/chloroform extraction and ethanol precipitation, 
and its purity, quality, and concentration were assessed using a Na-
noDrop spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA).

SNP genotyping was conducted via allele-specific fluorescent 
probes using custom-developed polymerase chain reaction (PCR) 
protocols. Primers were designed using Primer3 software.22 Real-
time PCR was performed in a 25 µL reaction volume containing 
1.5 U of Hot Start Taq DNA polymerase (Biolabmix, Novosibirsk, 
Russia), approximately 10 ng of template DNA, and the follow-
ing reagent concentrations: 0.25 µM of each primer, 0.1 µM of 
each probe, 250 µM of each dNTP, and varying MgCl2 concentra-
tions (1.5 mM for rs66998222; 3 mM for rs10929757, rs9419958, 
rs1812266, rs1986649, rs2553772, and rs11031731; 3.5 mM for 
rs641760 and rs2235529; 4 mM for rs59760198). PCR buffer (1×) 
included 67 mM Tris-HCl (pH 8.8), 16.6 mM (NH4)2SO4, and 
0.01% Tween-20. The thermal cycling protocol consisted of an ini-
tial denaturation at 95°C for 10 m, followed by 39 cycles of 92°C 
for 30 s and annealing/elongation at various temperatures for 1 m 
(60°C for rs1812266; 61°C for rs9419958; 64°C for rs1986649, 
rs2553772, rs11031731, rs2235529, and rs59760198; 65°C for 
rs10929757 and rs641760; 66°C for rs66998222).

For quality control, 10% of samples underwent blinded du-
plicate genotyping, demonstrating >99% concordance. The 
rs9419958 (STN1) SNP, which deviated from Hardy–Weinberg 
equilibrium in controls, was re-genotyped and showed 100% con-
cordance with initial results, confirming data reliability.

Data analysis methods
Statistical analyses were performed using STATISTICA software 
(version 13.3, Santa Clara, CA, USA). The normality of data distri-
butions was evaluated with the Shapiro–Wilk test. As most quan-
titative variables deviated from normality, results are presented 
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Table 1.  Baseline and clinical characteristics of the study cohort

Baseline characteristics of the study cohort UF group (n = 737) Control group (n = 451) p-value

Age, Ме [Q1; Q3] 48 [43; 52] 51 [43; 59] <0.001

Smoking Yes, N (%) 108 (14.7%) 44 (9.7%) >0.05

No, N (%) 629 (85.3%) 407 (90.3%)

Low fruit/vegetable consumption Yes, N (%) 603 (81.8%) ND –

No, N (%) 134 (18.2%) ND

Infertility history Yes, N (%) 8 (1.1%) 2 (0.4%) >0.05

No, N (%) 566 (76.8%) 376 (83.4%)

ND, N (%) 163 (22.1%) 73 (16.2%)

Pelvic inflammatory diseases (PID) Yes, N (%) 108 (14.6%) 61 (13.5%) >0.05

No, N (%) 464 (63.0%) 318 (70.5%)

ND, N (%) 165 (22.4%) 72 (16%)

Family history of UFs Yes, N (%) 205 (27.8%) 36 (8%) <0.01

No, N (%) 532 (72.2%) 415 (92%)

ND, N (%) – –

Menarche age (years) Ме [Q1; Q3] 12 [12; 14] 13 [12; 14] >0.05

Pregnancy history Yes, N (%) 622 (84.4%) 401 (88.9%) >0.05

No, N (%) 29 (3.9%) 13 (2.9%)

ND, N (%) 86 (11.7%) 37 (8.2%)

Gravidity (total pregnancies) Ме [Q1; Q3] 3 [2; 5] 3 [2; 4] >0.05

Parity Yes, N (%) 604 (81.9%) 394 (87.4%) >0.05

No, N (%) 44 (6%) 19 (4.2%)

ND, N (%) 89 (12.1%) 38 (8.4%)

Number of deliveries Ме [Q1; Q3] 2 [1; 2] 2 [1; 2] >0.05

Medical abortion history Yes, N (%) 438 (59.4%) 225 (49.9%) >0.05

No, N (%) 201 (27.3%) 178 (39.5%)

ND, N (%) 98 (13.3%) 48 (10.6%)

Medical abortion numbers Ме [Q1; Q3] 1 [0; 2] 1 [0; 2] >0.05

Miscarriages in anamnesis Yes, N (%) 133 (18%) 82 (18.2%) >0.05

No, N (%) 478 (64.9%) 318 (70.5%)

ND, N (%) 126 (17.1%) 51 (11.3%)

Number of miscarriages Ме [Q1; Q3] 0 [0; 0] 0 [0; 0] >0.05

Periods prolongation (>7 days) Yes, N (%) 180 (24.4%) 83 (18.4%) >0.05

No, N (%) 442 (60%) 305 (67.6%)

ND, N (%) 115 (15.6%) 63 (14%)

Periods regularity Yes, N (%) 357 (48.4%) 200 (44.3%) <0.001

No, N (%) 159 (21.6%) 2 (0.5%)

ND, N (%) 221 (30%) 249 (55.2%)

Dysmenorrhea Yes, N (%) 227 (30.8%) 23 (5.1%) <0.001

No, N (%) 236 (32%) 179 (39.7%)

ND, N (%) 274 (37.2%) 249 (55.2%)

(continued)
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as medians with interquartile ranges. Continuous variables were 
analyzed using the Mann–Whitney nonparametric test, while cat-
egorical variables were evaluated using Pearson’s χ2 test, incor-
porating Yates’ continuity correction when appropriate for small 
sample sizes.

Hardy–Weinberg equilibrium for genotype distributions was as-
sessed using Fisher’s exact test. The SNPStats web-based platform 
(https://www.snpstats.net) was used to perform logistic regression 
analyses examining potential correlations between genotype dis-
tributions and UF susceptibility. Analyses followed an additive ge-
netic model and were adjusted for confounding factors, including 
age and family history of UFs. To account for the potential influ-
ence of risk factors on genetic associations, separate analyses were 
conducted for patients with and without exposure to these factors.

The model-based (MB) multifactor dimensionality reduction 
(MDR) method was applied to investigate combinations of geno-
types at two, three, and four loci, assessing both gene–gene (G×G) 
interactions and interactions between genotypes and UF risk fac-
tors (gene–environment, G×E).23 Risk factors such as medical 
abortions and PID were included in the G×E interaction analyses. 
Empirical p-values (pperm) for each model were calculated using 
permutation testing with 1,000 iterations—the default procedure 
for simultaneously testing all potential interactions of a given 
complexity.24 Associations with permutation-adjusted significance 
(pperm < 0.05) were considered statistically reliable. All regres-
sion models were adjusted for patient age and documented family 
history of UFs.

Statistical computations were conducted in R software (version 
3.6.3, R Foundation for Statistical Computing, Vienna, Austria). 
For each level of interaction, three to four models with the highest 
Wald statistics and most significant p-values were included in the 
final analysis. The MB-MDR method also allowed the identifica-
tion of specific genotype combinations significantly associated 
with the studied phenotypes (p < 0.05). Analyses were performed 
using the MB-MDR program compatible with the R software (ver-
sion 3.6.3).

To investigate the functional implications of the studied SNPs, 
several bioinformatics tools were utilized (described in detail in 
our previous research25–27):
•	 GTEx Portal (http://www.gtexportal.org/) was used to ana-

lyze SNP associations with expression quantitative trait loci 
(eQTLs) across various tissues, including reproductive organs, 
adipose tissue, blood, and endocrine glands.

•	 eQTLGen (https://www.eqtlgen.org/) provided additional in-
sights into SNP–eQTL relationships, particularly in peripheral 

blood samples.
•	 HaploReg v4.2 (https://pubs.broadinstitute.org/mammals/hap-

loreg/haploreg.php) was used to assess SNP positioning in reg-
ulatory elements, including DNase hypersensitive regions and 
histone modifications.

•	 atSNP Function Prediction (http://atsnp.biostat.wisc.edu/
search) evaluated how SNP variants affected transcription fac-
tor (TF) binding affinity based on reference and alternative al-
leles.

•	 Gene Ontology (http://geneontology.org/) was used to identify 
biological processes enriched among TFs associated with the 
studied SNPs, linking these processes to UF pathogenesis.

•	 RSKP (https://cd.hugeamp.org/) integrated findings from ge-
netic association studies, providing additional data on potential 
relationships between identified SNPs and UF-related clinical 
manifestations, including abnormal heavy menstrual bleeding 
and elevated body mass index (BMI).

Results

Association of GWAS loci with UF risk in Russian women
The distribution of SNP genotypes across study cohorts is present-
ed in Table S1. As genetic associations may influence population 
equilibrium patterns, we first verified Hardy–Weinberg equilibri-
um in control subjects. All examined polymorphisms conformed to 
Hardy–Weinberg equilibrium expectations (p > 0.05), with the ex-
ception of rs9419958 in the STN1 gene (Table S1). Technical vali-
dation through replicate genotyping confirmed 100% concordance 
for rs9419958, warranting its inclusion in subsequent analyses.

Association analysis revealed statistically significant rela-
tionships with UF risk (Table 2). The A allele of rs66998222 
(LOC102723323) demonstrated a protective effect (odds ra-
tio (OR) = 0.81, 95% confidence interval (CI) = 0.66–0.99, p = 
0.038). Conversely, rs11031731 (THEM7P, WT1) was associated 
with increased disease susceptibility (effect allele A, OR = 1.39, 
95% CI = 1.08–1.80, p = 0.01).

Gene-gene interactions analysis (MB-MDR, MDR modeling)
Using the MB-MDR approach, we identified eight significant 
gene–gene interaction models involving GWAS-identified loci as-
sociated with UF: four two-locus models, two three-locus mod-
els, and two four-locus models (pperm ≤ 0.05) (Table 3). Notably, 
five polymorphic loci, rs9419958 (STN1), rs10929757 (GREB1), 
rs66998222 (LOC102723323), rs2553772 (LOC105376626), and 

Baseline characteristics of the study cohort UF group (n = 737) Control group (n = 451) p-value

Menorrhagia (heavy menstrual bleeding) Yes, N (%) 370 (50.2%) 36 (8%) <0.001

No, N (%) 144 (19.5 %) 166 (36.8%)

ND, N (%) 223 (30.3%) 249 (55.2%)

Age at uterine fibroid diagnosis (years) Ме [Q1; Q3] 40 [36; 45] – –

Uterine dimensions at time of diagnosis 
(gestational week equivalents)

Ме [Q1; Q3] 7 [6; 9] – –

Current uterine size (weeks of gestation) Ме [Q1; Q3] 9 [7; 12] – –

Growth of UFs (weeks of gestation/year) Ме [Q1; Q3] 0.33 [0; 0.76] – –

Values are presented as Me (median) with interquartile range (Q1–Q3). Bold formatting marks statistically significant comparisons (p < 0.05). ND, unavailable data; UF, uterine 
fibroid.

Table 1.   - (continued)
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rs2235529 (WNT4), were incorporated into two or more of the 
most statistically significant gene–gene interaction patterns, sug-
gesting their potential role in polygenic disease mechanisms. At 
the next stage, the interactions of these genetic variants were ana-
lyzed using the MDR method (Fig. 2).

The MDR method indicated that the genetic variants included 
in the best G×G models exhibited multidirectional effects (syn-
ergism, antagonism, and additive effects). Alongside interaction 
analyses, we separately evaluated the individual (mono) effects 

of the genetic variants comprising the most significant gene–gene 
interaction models. Their contributions to UF entropy (0.02–
0.39%) were comparable with the effects of intergenic interac-
tions (0.01%–0.42%). The most pronounced mono-effect was ob-
served for rs9419958 (STN1; 0.39% entropy), while the strongest 
interactions occurred between rs2235529 (WNT4) and rs2553772 
(LOC105376626; 0.42% entropy; pronounced synergism). Among 
the strongest associations with UF risk were specific genotype 
combinations from interacting polymorphic variants, revealing al-

Fig. 1. Participant selection algorithm and methodological workflow. The participant flow diagram follows STROBE recommendations, documenting 
screening eligibility, exclusions, final analytical sample composition, and applied research methodology. eQTL, expression quantitative trait loci; GWAS, 
genome-wide association studies; MB, Model-Based; MDR, Multifactor Dimensionality Reduction; PCR, Polymerase chain reaction; SNP, single nucleotide 
polymorphism; STROBE, Strengthening of Reporting of Observational Studies in Epidemiology; UF, uterine fibroid.
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lelic patterns that may influence disease susceptibility: 1) Decrease 
risk of UF: rs9419958 STN1 C/C × rs10929757 GREB1 C/A (beta 
= −0.08, p = 0.01), rs641760 PITPNM2 C/T × rs9419958 STN1 
C/C (beta = −0.087, p = 0.01), rs9419958 STN1 C/C × rs66998222 
LOC102723323 A/G (beta = −0.11, p = 0.002), rs9419958 STN1 
C/C × rs59760198 DNM3 C/C × rs66998222 LOC102723323 A/G 
(beta = −0.198, p = 0.001), rs11031731 THEM7P, WT1 G/G × 
rs9419958 STN1 C/C × rs10929757 GREB1 C/A × rs66998222 
LOC102723323 A/A (beta = −0.45, p = 0.0001), rs2553772 
LOC105376626 T/G × rs2235529 WNT4 T/C × rs10929757 
GREB1 C/С × rs66998222 LOC102723323 А/G (beta = −0.557, 
p = 0.003); 2) Increase disease risk: rs2553772 T/T × rs9419958 

T/C (beta = 0.186, p = 0.006), rs2553772 LOC105376626 T/T × 
rs2235529 WNT4 C/C × rs9419958 STN1 T/C (beta = 0.29, p = 
0.001) (Table S2).

Environmental risk factor stratification analysis of GWAS SNPs
The investigation extended to interactions with environmental 
risk factors, with detailed stratified analyses presented in Ta-
ble S3 and summarized in Table 4. We found that rs66998222 
(LOC102723323; OR = 0.70, 95% CI = 0.54–0.91, p = 0.009) and 
rs641760 (PITPNM2; OR = 0.71, 95% CI = 0.53–0.96, p = 0.026) 
were associated with a reduced risk of UF in patients with a history 
of induced abortions. Stratified analysis revealed that rs2553772 

Table 2.  Results of the analysis of associations between GWAS SNPs and UFs in the entire group

Genetic variant Effect allele Other allele N OR [95% CI]a pb

Entire group

  rs66998222 LOC102723323 A G 1056 0.81 [0.66–0.99] 0.038

  rs641760 PITPNM2 T C 1050 0.81 [0.65–1.01] 0.06

  rs2553772 LOC105376626 T G 1052 0.87 [0.73–1.04] 0.13

  rs10929757 GREB1 A C 1054 0.97 [0.81–1.16] 0.71

  rs2235529 WNT4 T C 1047 1.06 [0.82–1.36] 0.67

  rs59760198 DNM3 T C 1037 1.10 [0.91–1.32] 0.32

  rs1812266 LOC105375949 C G 1056 1.12 [0.93–1.33] 0.23

  rs1986649 FOXO1 T C 1055 1.12 [0.89–1.40] 0.33

  rs9419958 STN1 T C 1056 1.26 [1.00–1.60] 0.05

  rs11031731 THEM7P, WT1 A G 1056 1.39 [1.08–1.80] 0.01

All statistical models used the minor allele as the reference and controlled for age and familial UF history. Data show: aadjusted odds ratios with 95% CIs; bsignificance values. Bold 
indicates p < 0.05. CI, confidence interval; GWAS, genome-wide association studies; OR, odds ratio; SNP, single nucleotide polymorphism; UF, uterine fibroid.

Table 3.  UF-associated gene-gene interactions (MB-MDR modeling)

Gene-gene interaction models NH βH WH NL βL WL Wmax pperm

The best two-locus models of intergenic interactions (for G×G models with pmin < 0.002, 1000 permutations)

rs9419958 STN1 × rs10929757 GREB1 2 0.1434 10.253 1 −0.0800 6.156 10.253 0.028

rs641760 PITPNM2 × rs9419958 STN1 1 0.0730 3.121 2 −0.1064 10.030 10.030 0.029

rs2553772 LOC105376626 × rs9419958 STN1 2 0.1433 10.110 1 −0.1226 8.554 10.110 0.033

rs9419958 STN1 × rs66998222 LOC102723323 1 0.1158 4.637 1 −0.1108 9.856 9.856 0.033

The best three-locus models of intergenic interactions (for G×G models with pmin < 1×10−4, 1000 permutations)

rs2553772 LOC105376626 × rs2235529 
WNT4 × rs9419958 STN1

4 0.2192 20.519 4 −0.1415 8.741 20.52 0.002

rs9419958 STN1 × rs59760198 DNM3 
× rs66998222 LOC102723323

0 NA NA 4 −0.1652 22.016 22.02 0.006

The best four-locus models of gene-gene interactions (for G×G models with pmin < 1×10−8, 1000 permutations)

rs11031731 THEM7P, WT1 × 
rs9419958 STN1 × rs10929757 GREB1 
× rs66998222 LOC102723323

2 0.1961 6.218 6 −0.2643 41.58 41.58 < 0.001

rs2553772 LOC105376626 × rs2235529 
WNT4 × rs10929757 GREB1 × 
rs66998222 LOC102723323

4 0.1868 17.256 8 −0.4425 40.01 40.01 0.001

All models control for age and familial UF history. Loci participating in multiple optimal G×G models are bolded. MB, Model-Based; MDR, Multifactor Dimensionality Reduction; 
NH, number of high-risk genotype interactions; NL, low-risk interaction count; pperm, permutation-adjusted p-value; UF, uterine fibroid; WH, high-risk Wald statistic; WL, low-risk 
Wald statistic; βH, high-risk interaction coefficient; βL, low-risk coefficient.
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(LOC105376626) conferred protection against UF specifically in 
women without a history of induced abortion (OR = 0.61, 95% 
CI = 0.45–0.82, p = 0.001). Conversely, rs11031731 (THEM7P/
WT1) showed risk-enhancing effects both in women with a history 
of abortion (OR = 1.60, 95% CI = 1.12–2.28, p = 0.008) and in 
those without a history of PID (OR = 1.43, 95% CI = 1.04–1.96, 
p = 0.02).

Gene-environment interactions of UF GWAS genes (MB-MDR, 
MDR modeling)
MB-MDR analysis identified five significant gene-environment 
interaction models: two two-level, two three-level, and one 
four-level interaction (Table 5). Remarkably, SNPs rs2553772 
(LOC105376626) and rs1986649 (FOXO1), along with induced 
abortions, participated in two or more of the best gene–environ-
ment interaction models, and the interaction of induced abortions 
× rs2553772 (LOC105376626) contributed to three of these five 
top G×E interactions. At the next stage, the interactions of these 
genetic variants and risk factors were analyzed using the MDR 

method (Fig. 3).
First, the MDR methodology quantified induced abortions as 

having the strongest individual environmental effect (1.15% en-
tropy contribution), exceeding both individual SNP effects (0.11–
0.16%) and G×E interaction effects (0.05–0.34%). Second, induced 
abortions were characterized by pronounced synergism in interac-
tion with rs2553772 (LOC105376626) and additive (independ-
ent) effects in interaction with rs1986649 (FOXO1). Third, SNPs 
characterizing the best G×E models (rs2553772 LOC105376626 
and rs1986649 FOXO1) exhibited moderate antagonism in inter-
action with each other. Fourth, the following gene–environment 
interactions showed the strongest associations with reduced UF 
risk: no induced abortions × rs2553772 LOC105376626 T/T (beta 
= −0.236, p = 5.54×10−5), no induced abortions × rs11031731 
THEM7P, WT1 G/G × rs1986649 FOXO1 C/C (beta = −0.222, p = 
4.59×10−8), no induced abortions × rs2553772 LOC105376626 T/T 
× rs1812266 LOC105375949 C/G (beta = −0.345, p = 3.21×10−5), 
induced abortions × rs2553772 LOC105376626 G/G× rs59760198 
DNM3 C/C × rs66998222 LOC102723323 A/G (beta = −0.21, p 
= 0.016). The following G×E interaction was most strongly as-
sociated with increased UF risk: induced abortions × rs1986649 
FOXO1 C/C (beta = 0.095, p = 2.33×10−3) (Table S4).

GWAS loci associated with clinical course parameters of UFs
We also assessed the influence of genotype associations on the 
quantitative characteristics of the UF clinical course (Fig. 4, Ta-
ble S5). A pronounced association was observed for rs1986649 
(FOXO1) with age of disease onset (p = 0.049) and UF growth rate 
(p = 0.017), so this SNP was included in further study.

Functional annotation of SNPs

QTL effects
According to the GTEx Portal, the C allele of SNP rs641760 (PIT-
PNM2) is associated with increased expression of CDK2AP1 in 
subcutaneous adipose tissue and whole blood, RP11-282O18.3 in 
the uterus and subcutaneous adipose tissue, C12orf65 in subcu-
taneous adipose tissue, and ARL6IP4 in whole blood (Table 6). 
Conversely, this allele is linked to decreased expression of KMT5A 
and ABCB9 in whole blood.

The eQTLGen Browser reports that the T allele of SNP rs641760 
(PITPNM2) increases the expression of SETD8, MPHOSPH9, 
PITPNM2, SNRNP35, OGFOD2, and EIF2B1, while decreasing 
expression of SBNO1 in blood (Table 6).

For SNP rs2553772 (LOC105376626), the G allele increases 
CD44 expression in adipose tissue, while the T allele decreases 
RP1-68D18.4 expression (Table 6).

Fig. 2. Architecture of significant epistatic G×G networks in UF pathogen-
esis. Color coding: red/orange = synergistic; green = antagonistic; brown 
= additive interactions. Line thickness scales with effect magnitude (% en-
tropy contribution). UF, uterine fibroid.

Table 4.  Effect modification by prior induced abortions and PID history on GWAS SNP–UF risk associations

SNP Effect allele Other allele N OR [95% CI] p N OR [95% CI]a pb

Without induced abortions Induced abortions

rs2553772 LOC105376626 T G 331 0.61 (0.45–0.82) 0.001 585 1.04 (0.82–1.32) 0.75

rs66998222 LOC102723323 A G 335 0.93 (0.65–1.33) 0.69 585 0.70 (0.54–0.91) 0.009

rs641760 PITPNM2 T C 329 1.04 (0.72–1.49) 0.84 585 0.71 (0.53–0.96) 0.026

rs11031731 THEM7P, WT1 A G 335 1.27 (0.80–2.01) 0.3 585 1.60 (1.12–2.28) 0.008

Without PID With PID

rs11031731 THEM7P, WT1 A G 696 1.43 (1.04–1.96) 0.02 136 2.01 (0.91–4.43) 0.07

All calculations were performed relative to the minor alleles (effect allele). aodds ratio and 95% confidence interval; bp-value; statistically significant differences are marked in 
bold. CI, confidence interval; GWAS, genome-wide association studies; OR, odds ratio; PID, pelvic inflammatory disease; SNP, single nucleotide polymorphism; UF, uterine fibroid.
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Finally, the T allele of SNP rs1986649 (FOXO1) correlates with 
increased FOXO1 expression and decreased levels of MRPS31, 
SLC25A15, ELF1, MIR621, and KBTBD7 in blood, as well as re-
duced RLIMP1 expression in subcutaneous adipose tissue (Table 6).

Transcription factors
Analysis of TFs revealed that the risk allele A of rs66998222 
(LOC102723323) creates DNA binding sites for 28 TFs, co-
regulating negative regulation of cell population proliferation 
(GO:0008285; false discovery rate (FDR) = 0.0099) and cellular 
response to cytokine stimulus (GO:0071345; FDR = 0.0107). The 
protective allele G of rs66998222 (LOC102723323) creates DNA 
binding sites for 24 TFs, co-regulating interleukin (IL)-1 beta 
production (GO:0032651; FDR = 0.0229), response to hypoxia 
(GO:0001666; FDR = 0.0302), and positive regulation of cytokine 
production (GO:0001819; FDR = 0.0190) (Table S6).

The risk allele A of rs11031731 (THEM7P, WT1) generates 
DNA binding sites for 33 TFs involved in the regulation of adipose 
tissue development (GO:1904177; FDR = 0.0318) and cell popu-
lation proliferation (GO:0008283; FDR = 0.0478). The protective 
allele G of rs11031731 (THEM7P, WT1) creates DNA binding sites 
for 35 TFs, regulating the following biological processes: regula-
tion of cellular response to growth factor stimulus (GO:0090287; 
FDR = 0.0457), negative regulation of cell population proliferation 
(GO:0008285; FDR = 0.0230), positive regulation of apoptotic 
process (GO:0043065; FDR = 0.0311), negative regulation of cell 
differentiation (GO:0045596; FDR = 0.0130), and regulation of 
growth (GO:0040008; FDR = 0.0495) (Table S7).

The risk allele G of rs2553772 (LOC105376626) creates DNA 
binding sites for 20 TFs, jointly involved in the SREBP signaling 
pathway (GO:0032933; FDR = 0.0045), cellular response to trans-
forming growth factor beta stimulus (GO:0071560; FDR = 0.0301), 
steroid metabolic process (GO:0008202; FDR = 0.0091), and nega-

Fig. 3. Architecture of significant G×E interactions in UF pathogenesis. 
Key: Ind_abort, induced abortions; red: synergistic, green: antagonistic, 
brown: additive effects. Line thickness corresponds to the effect size (% 
entropy contribution). UF, uterine fibroid.

Ta
bl

e 
5.

  U
F-

as
so

ci
at

ed
 g

en
e–

en
vi

ro
nm

en
t i

nt
er

ac
tio

ns
 (M

B-
M

DR
 m

od
el

in
g)

G
en

e-
en

vi
ro

nm
en

t i
nt

er
ac

tio
n 

m
od

el
s

N
H

βH
W

H
N

L
βL

W
L

W
m

ax
p pe

rm

Th
e 

be
st

 tw
o-

or
de

r m
od

el
s o

f g
en

e-
sm

ok
in

g 
in

te
ra

ct
io

ns
 (f

or
 G

×E
 m

od
el

s w
ith

 p
m

in
 <

 1
×1

0−5
, 1

00
0 

pe
rm

ut
at

io
ns

)

In
d_

ab
or

t ×
 rs

25
53

77
2 

LO
C1

05
37

66
26

1
0.

05
97

3.
26

5
2

−0
.1

65
3

21
.6

0
21

.6
0

< 
0.

00
1

In
d_

ab
or

t ×
 rs

19
86

64
9 

FO
XO

1
1

0.
09

50
9.

32
1

1
−0

.1
67

1
21

.4
8

21
.4

8
< 

0.
00

1

Th
e 

be
st

 th
re

e-
or

de
r m

od
el

s o
f g

en
e-

in
te

ra
ct

io
ns

 (f
or

 G
×E

 m
od

el
s w

ith
 p

m
in

 <
 1

×1
0−6

, 1
00

0 
pe

rm
ut

at
io

ns
)

In
d_

ab
or

t ×
 rs

11
03

17
31

 T
HE

M
7P

, W
T1

 ×
 rs

19
86

64
9 

FO
XO

1
3

0.
09

21
7.

44
9

1
−0

.2
22

30
.3

9
30

.3
9

< 
0.

00
1

In
d_

ab
or

t ×
 rs

25
53

77
2 

LO
C1

05
37

66
26

 ×
 rs

18
12

26
6 

LO
C1

05
37

59
49

1
0.

12
30

5.
17

9
3

−0
.2

45
26

.3
1

26
.3

1
0.

00
2

Th
e 

be
st

 fo
ur

-o
rd

er
 m

od
el

s o
f g

en
e-

in
te

ra
ct

io
ns

 (f
or

 G
×E

 m
od

el
s w

ith
 p

m
in

 <
 1

×1
0−9

, 1
00

0 
pe

rm
ut

at
io

ns
)

In
d_

ab
or

t ×
 rs

25
53

77
2 

LO
C1

05
37

66
26

 ×
 rs

59
76

01
98

 
DN

M
3 

× 
rs

66
99

82
22

 LO
C1

02
72

33
23

5
0.

16
49

17
.7

94
10

−0
.2

87
2

40
.1

4
40

.1
4

< 
0.

00
1

Al
l m

od
el

s 
co

nt
ro

l f
or

 a
ge

 a
nd

 fa
m

ili
al

 U
F 

hi
st

or
y.

 L
oc

i p
ar

tic
ip

at
in

g 
in

 m
ul

tip
le

 o
pt

im
al

 G
×E

 m
od

el
s 

ar
e 

bo
ld

ed
. I

nd
_a

bo
rt

, i
nd

uc
ed

 a
bo

rt
io

ns
; M

B,
 m

od
el

-b
as

ed
; M

DR
, m

ul
tif

ac
to

r d
im

en
sio

na
lit

y 
re

du
ct

io
n;

 N
H,

 n
um

be
r o

f 
hi

gh
-r

isk
 g

en
ot

yp
e 

in
te

ra
ct

io
ns

; N
L,

 lo
w

-r
isk

 in
te

ra
ct

io
n 

co
un

t; 
p pe

rm
, p

er
m

ut
at

io
n-

ad
ju

st
ed

 p
-v

al
ue

; U
F, 

ut
er

in
e 

fib
ro

id
; W

H,
 h

ig
h-

ris
k 

W
al

d 
st

at
ist

ic
; W

L,
 lo

w
-r

isk
 W

al
d 

st
at

ist
ic

; β
H,

 h
ig

h-
ris

k 
in

te
ra

ct
io

n 
co

ef
fic

ie
nt

; β
L,

 lo
w

-r
isk

 
co

ef
fic

ie
nt

.

https://doi.org/10.14218/GE.2025.00056


DOI: 10.14218/GE.2025.00056  |  Volume 24 Issue 4, October 2025 9

Ponomareva L. et al: Abortion and PID alter GWAS fibroid risk loci Gene Expr

tive regulation of cell population proliferation (GO:0008285; FDR 
= 0.0037). The protective allele T of rs2553772 (LOC105376626) 
generates DNA binding sites for 42 TFs, regulating the following 
biological processes: positive regulation of vascular endothelial 
growth factor production (GO:0010575; FDR = 0.0419), positive 
regulation of angiogenesis (GO:0045766; FDR = 0.0063), angio-
genesis (GO:0001525; FDR = 0.0008), muscle organ development 
(GO:0007515; FDR = 0.0436), and regulation of cell population 

proliferation (GO:0042127; FDR = 0.0175) (Table S8).
The T allele of rs1986649 (FOXO1) creates DNA binding sites 

for 30 TFs, jointly involved in the SREBP signaling pathway 
(GO:0032933; FDR = 0.0067), positive regulation of transforming 
growth factor beta production (GO:0071636; FDR = 0.0206), reg-
ulation of IL-5 production (GO:0032674; FDR = 0.0239), SMAD 
protein signal transduction (GO:0060395; FDR = 0.0340), posi-
tive regulation of IL-4 production (GO:0032753; FDR = 0.0380), 

Fig. 4. Boxplots for statistically significant associations of GWAS SNP genotypes with clinical and biological characteristics of UF patients. (a) Age of UF 
diagnosis for rs1986649 FOXO1; (b) Growth of UFs (weeks of gestation/year) for rs1986649 FOXO1. UF, uterine fibroid; GWAS, genome-wide association 
studies; SNP, single nucleotide polymorphism.

Table 6.  Cis-eQTL–mediated gene expression modulation by UF-linked GWAS SNPs (GTEx Portal and eQTLGen data)

Genetic variant Assessed 
allele

Expressed 
gene p Effect (NES) Tissue Assessed 

allele Symbol Z-score FDR

GTEx portal eQTLgene
rs641760 
PITPNM2 (T/C)

C CDK2AP1 2.3×10−32 ↑(0.40) Adipose - 
Subcutaneous

T SETD8 ↑(21.4017) 0

C12orf65 5.0×10−12 ↑(0.25) Adipose - 
Subcutaneous

MPHOSPH9 ↑(15.2575) 0

RP11-
282O18.3

3.2×10−7 ↑(0.22) Adipose - 
Subcutaneous

SBNO1 ↓(−8.2818) 0

RP11-
282O18.3

2.4×10−5 ↑(0.57) Uterus PITPNM2 ↑(6.0034) 2×10−5

CDK2AP1 8.1×10−12 ↑(0.29) Whole blood SNRNP35 ↑(5.9739) 2.6×10−5

KMT5A 1.9×10−9 ↓(−0.19) Whole blood OGFOD2 ↑(5.3297) 0.0003
ARL6IP4 3.4×10−5 ↑(0.072) Whole blood EIF2B1 ↑(4.9115) 0.0026
ABCB9 4.2×10−5 ↓(−0.13) Whole blood

rs2553772 
LOC105376626 
(T/G)

G CD44 8.8×10−8 ↑(0.13) Adipose - 
Subcutaneous

T RP1-
68D18.4

↓(−5.2045) 0.0006

rs1986649 
FOXO1 (C/T)

T RLIMP1 0.0001 ↑(0.24) Adipose - 
Subcutaneous

T MRPS31 0

FOXO1 ↑(6.7807) 0
SLC25A15 ↓(−5.9359) 2.6×10−5

ELF1 ↓(−4.8444) 0.0036
MIR621 ↓(−4.6621) 0.0083
KBTBD7 ↓(−4.3822) 0.0304

↑/↓, the effect on expression (increase or decrease). eQTL, expression quantitative trait loci; FDR, false discovery rate; GWAS, genome-wide association studies; NES, normalized 
effect size; SNP, single nucleotide polymorphism; UF, uterine fibroid.

https://doi.org/10.14218/GE.2025.00056


DOI: 10.14218/GE.2025.00056  |  Volume 24 Issue 4, October 202510

Ponomareva L. et al: Abortion and PID alter GWAS fibroid risk lociGene Expr

cellular response to transforming growth factor beta stimulus 
(GO:0071560; FDR = 0.0042), and regulation of transforming 
growth factor beta receptor signaling pathway (GO:0017015; FDR 
= 0.0427). The reference allele C of rs1986649 (FOXO1) creates 
DNA binding sites for 57 TFs, co-regulating positive regulation 
of vitamin D receptor signaling pathway (GO:0070564; FDR = 
0.0069), intrinsic apoptotic signaling in response to DNA dam-
age by p53-class mediator (GO:0042771; FDR = 0.0035), nega-
tive regulation of canonical Wnt signaling pathway (GO:0090090; 
FDR = 0.0118), transforming growth factor beta receptor super-
family signaling pathway (GO:0141091; FDR = 0.0216), response 
to decreased oxygen levels (GO:0036293; FDR = 0.0176), and re-
sponse to growth factor (GO:0070848; FDR = 0.0214) (Table S9).

Histone modifications
Using HaploReg v4.2, UF-associated SNPs were annotated for 
regulatory potential, identifying characteristic histone modifica-
tion patterns in blood cells, vessels, adipose tissue, and ovaries 
(Table 7).

The genomic regions of SNPs rs11031731 (THEM7P, WT1), 
rs641760 (PITPNM2), rs2553772 (LOC105376626), and rs1986649 
(FOXO1) were marked by characteristic histone modifications in 
blood cells, including mono-methylation (H3K4me1) and tri-meth-
ylation (H3K4me3) at the fourth lysine residue of histone H3, along 
with acetylation at the 27th (H3K27ac) and 9th (H3K9ac) lysine 

residues of histone H3. Similarly, SNP rs2553772 (LOC105376626) 
is associated with histone marks in blood vessels; SNPs rs11031731 
(THEM7P, WT1) and rs1986649 (FOXO1) are associated with his-
tone marks in ovaries; and SNPs rs641760 (PITPNM2), rs2553772 
(LOC105376626), and rs1986649 (FOXO1) are linked with histone 
marks in adipose tissue (Table 7).

Computational analysis of UF GWAS SNPs and associated 
clinical manifestations
Cross-referencing with the RSKP bioinformatics resource revealed 
population-wide consistency for the identified UF-associated SNPs. 
The risk variants rs11031731 (THEM7P/WT1), rs641760 (PITP-
NM2), rs2553772 (LOC105376626), and rs1986649 (FOXO1) dem-
onstrated conserved risk-increasing effects across ethnic groups, 
while rs66998222 (LOC102723323) maintained its protective asso-
ciation. These directional effects extended to both UF susceptibility 
and heavy menstrual bleeding phenotypes in diverse populations. 
Additionally, SNPs were linked with the following UF-related phe-
notypes: decreased age of menarche (rs1986649 FOXO1), increased 
age of menarche (rs66998222 LOC102723323 and rs641760 
PITPNM2), increased age at natural menopause (rs641760 PIT-
PNM2 and rs1986649 FOXO1), decreased age at natural meno-
pause (rs11031731 THEM7P, WT1), increased BMI (rs11031731 
THEM7P, WT1), and decreased BMI (rs66998222 LOC102723323 
and rs1986649 FOXO1) (Table S10).

Table 7.  The impact of UF-associated GWAS SNPs on histone marks in various tissues

SNP (Ref/Alt allele) Tissue marks Blood Blood vessels Ovary Adipose

rs66998222 LOC102723323 (G/A) H3K4me1 – – – –

H3K4me3 – – – –

H3K27ac – – – –

H3K9ac – – – –

rs11031731 THEM7P, WT1 (G/A) H3K4me1 Enh – Enh –

H3K4me3 – – – –

H3K27ac – – – –

H3K9ac Pro – – –

rs641760 PITPNM2 (T/C) H3K4me1 Enh – – Enh

H3K4me3 Pro – – –

H3K27ac Enh – – Enh

H3K9ac Pro – – Pro

rs2553772 LOC105376626 (T/G) H3K4me1 Enh Enh – Enh

H3K4me3 Pro – – –

H3K27ac Enh – – Enh

H3K9ac Pro – – –

rs1986649 FOXO1 (C/T) H3K4me1 Enh – Enh Enh

H3K4me3 Pro – – –

H3K27ac Enh – – Enh

H3K9ac – – – Pro

Effect alleles are marked in bold. Enh, histone modification in the enhancer region; GWAS, genome-wide association studies; H3K27ac, acetylation at the 27th lysine residue of 
histone H3 protein; H3K4me1, mono-methylation at the 4th lysine residue of the histone H3 protein; H3K4me3, tri-methylation at the 4th lysine residue of the histone H3 protein; 
H3K9ac, the acetylation at the 9th lysine residue of the histone H3 protein; Pro, histone modification at the promoter region; SNP, single nucleotide polymorphism; UF, uterine 
fibroid.
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Discussion
UF pathogenesis involves a complex interplay between genetic 
predisposition and environmental factors.4 Examining how these 
interactions influence disease onset is critical.28,29 Among these, 
induced abortions and PID may act as modulators, influencing 
both the development and clinical course of UFs.14,19,30,31 While 
GWAS have identified numerous susceptibility loci,9,10,8,32 their 
interaction with environmental exposures remains understud-
ied. Building on our prior work with this Central Russian cohort, 
where we demonstrated broad modification of UF-associated loci 
by reproductive factors,19 we now extend this paradigm through 
functional analysis of ten newly selected SNPs, specifically prob-
ing abortion- and inflammation-related modulation mechanisms.

We found that abortions and pelvic inflammation may contrib-
ute to UFs through three shared biological pathways: 1) disruption 
of hormonal balance following pregnancy termination, leading to 
unopposed estrogenic stimulation33,34; 2) altered myometrial heal-
ing, promoting fibroproliferative activity35,36; and 3) increased lo-
cal inflammation, stimulating cytokine-driven growth pathways 
(e.g., IL-6, transforming growth factor-β).37 These factors can po-
tentiate or mitigate genetic predispositions, depending on the locus 
involved (Fig. 5).

We identified a protective association of rs66998222 and 
rs641760 in women with a history of induced abortion. Prior 
GWAS linked rs66998222 (LOC102723323) with decreased UF 
risk,32 and our data confirm this in both the entire group and abor-
tion-positive patients. Functional analysis revealed that the protec-
tive allele A at rs66998222 (LOC102723323) enhances binding of 
TFs involved in negative regulation of proliferation and cytokine 
responses, particularly relevant in an inflammatory microenviron-

ment (GO:0008285, GO:0071345).13

The rs641760 (PITPNM2) locus, also protective in this sub-
group, modulates the expression of genes such as CDK2AP1, 
ABCB9, and KMT5A, which are involved in progesterone-regulat-
ed uterine cell growth and tumor regulation, respectively.38–40 Oth-
er target genes include ARL6IP4 and MPHOSPH9, both of which 
influence estrogen signaling, metabolism, and mTOR activation—
processes amplified during hormonal fluctuations post-abortion.41 
Bioinformatic analysis via the RSKP portal confirmed the protec-
tive effect of the T allele of rs641760 (PITPNM2) and the A allele 
of rs66998222 (LOC102723323) against UFs and heavy menstrual 
bleeding, as well as their impact on UF-associated phenotypes 
such as BMI, age at menarche, and age at menopause.

The rs11031731 locus conferred elevated UF risk in the gen-
eral cohort and the abortion-positive subgroup, but not in patients 
with PID. This disparity may reflect the dominant role of chronic 
inflammation in the PID group, overshadowing the genetic ef-
fect.12 Conversely, in patients with a history of induced abortions, 
the increased UF risk appears to result from the combined effects 
of inflammation and abrupt changes in steroid sex hormone lev-
els following the procedure. Early termination of pregnancy fails 
to suppress the tumor-stimulating effects of estrogen during later 
stages of pregnancy,14 which can subsequently drive UF growth 
through various genetic and signaling pathways.33,34 Function-
ally, the risk allele A creates TF binding sites that upregulate 
pathways related to adipogenesis and proliferation (GO:1904177, 
GO:0008283). These mechanisms are amplified in patients with 
higher BMI or estrogen exposure, explaining the heightened risk in 
specific environmental contexts.42 According to the RSKP portal, 
this allele increases the risk of not only UF but also elevated BMI, 

Fig. 5. Bioinformatically predicted biological effects of GWAS loci on UF risk. cis-eQTL, expression quantitative trait loci; TF, transcription factor; UF, uterine 
fibroid; GWAS, genome-wide association studies.
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an important UF risk factor.4
This locus demonstrated a protective effect in patients with-

out a history of abortion. This protective effect may stem from 
the SNP’s role in regulating tissue healing and restoration.35,36 
Functional annotation showed that the T allele influences CD44 
expression, a gene implicated in tissue remodeling.43 The SNP 
also promotes TF binding linked to vascular growth, angiogen-
esis (GO:0010575, GO:0045766, GO:0001525), and myometrial 
homeostasis (GO:0042127, GO:0007515), potentially buffering 
against fibrotic changes in hormonally stable or low-inflammation 
environments. In patients without a history of induced abortions, 
this allele may facilitate balanced healing processes, contrasting 
with the more chaotic cellular responses triggered by injury or in-
flammation.36 This ability to regulate tissue repair and maintain 
homeostasis reduces UF risk by preventing hyperplastic changes 
in the myometrium.35

Although not modulated by abortion or PID, the TT genotype of 
rs1986649 (FOXO1) was associated with earlier onset and acceler-
ated UF growth. FOXO1 has long been studied as a key gene asso-
ciated with UF development.44–46 FOXO1 regulates progesterone 
(P4) signaling and inflammatory pathways, such as COX-2 and 
IL-6, linking endocrine and immune mechanisms.11,47 eQTL data 
indicate that it influences the expression of MRPS31 (p53 inter-
action),48 ELF1 (increased tumor risk),49 KBTBD7 (MAPK/AP-1 
inflammation),50 SLC25A15 (tumor formation under hypoxic con-
ditions),51 and other genes implicated in tumor metabolism and UF 
risk. The risk allele T upregulates transforming growth factor-β/
SMAD (GO:0071636, GO:0060395, GO:0071560, GO:0017015), 
SREBP (GO:0032933), and inflammatory IL-4/IL-5 (GO:0032674, 
GO:0032753) pathways, driving fibrosis and proliferation.35,52–54 
According to the RSKP portal, the SNP rs1986649 (FOXO1) is as-
sociated with higher UF risk, heavy menstrual bleeding, increased 
age at natural menopause, and earlier age at menarche, extending 
the duration of reproductive years and thereby elevating UF risk.55

This study has several limitations. First, the limited number of 
analyzed SNPs may have reduced detectable genetic associations. 
Second, TaqMan genotyping constraints excluded some SNPs due 
to probe design issues. Third, the lack of an independent Russian 
cohort prevented replication analysis. Fourth, the binary classifi-
cation of induced abortions (present/absent) precluded analysis of 
procedure frequency effects on genetic risk modulation.

Conclusions
Our findings support a model in which environmental exposures, 
such as abortion and PID, modulate the penetrance and directional-
ity of GWAS-identified UF loci. Some SNPs exhibit context-spe-
cific protective or deleterious effects, likely mediated through hor-
mone-sensitive transcriptional programs and immune pathways. 
Future work should explore these interactions longitudinally and 
in multi-ethnic cohorts to inform personalized risk stratification.
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